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Abstract—Nowadays, there is urgent demand for wireless sensor network applications. In these applications, usually a base station is

responsible for monitoring the entire network and collecting information. If emergency happens, it will propagate such information to all

other nodes. However, quite often the message source is not a fixed node, since there may be base stations in charge of different

regions or events. Therefore, how to propagate information efficiently when message sources vary from time to time is a challenging

issue. None of conventional broadcast algorithms can deal with this case efficiently, since the change of message source incurs a huge

implementation cost of rebuilding a broadcast tree. To deal with this difficult problem, we make endeavor in studying multiple source

broadcast, in which targeted algorithms should be source-independent to serve the practical need. In this paper, we formulate the

Minimum-Latency Multisource Broadcast problem. We propose a novel solution using a fixed shared backbone, which is independent

of the message sources and can be used repeatedly to reduce the broadcast latency. To the best of our knowledge, our work is

deemed the first attempt to design such a multisource broadcast algorithm with a derived theoretical latency upper bound.

Index Terms—All-to-all broadcast, wireless networks, distributed algorithms.

Ç

1 INTRODUCTION

WE studied the Minimum-Latency Multisource Broadcast
in wireless networks. Our objective is to minimize the

maximum latency of broadcasting a message from a subset
of nodes (called the source subset) to all other nodes in the
network. Moreover, the source subset may vary over time.
Although there already exist several algorithms in the
literature to minimize the single-source broadcast latency in
a network [1], [2], these algorithms were designed to
propagate information on a routing tree rooted at a fixed
source. The routing tree depends on the source. If the source
changes, the routing tree needs to be constructed again. As
a result, none of the existing algorithms can deal with the
scenario that the source changes over time without
incurring a prohibitively high memory requirement or
routing-tree construction cost.

The main contribution of this work is that we design a
broadcast algorithm independent of the source subset. We
construct a shared backbone (c.f. routing tree) for all possible
source subsets, so this shared backbone only needs to be
constructed once. Whenever one or more nodes need to
broadcast a message to the entire network, we can use the
same shared backbone repeatedly. Thus, the multisource
broadcast can be dealt with in practice. To the best of our
knowledge, our work is the first attempt to design a
multisource broadcast algorithm with a proven theoretical
latency upper bound.

The rest of this paper is outlined as follows: We present
the preliminaries in Section 2. Our main multisource
broadcast algorithm (Algorithm 6) and its latency upper
bound (Theorem 1) will be presented in Section 3. We
introduce a heuristic multisource broadcast algorithm
(Algorithm 10) in Section 4 which does not have a proven
theoretical latency bound but the simulation shows that this
algorithm actually achieves a much lower latency than
Algorithm 6. Related work is presented in Section 5.
Conclusion and future work will be stated in Section 6. A
supplementary document to this paper contains the
appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.310. In the appendix, available in the
online supplemental material, we first present two very
important techniques called tessellation and coloring for the
design of our algorithms. Some examples for algorithmic
illustration as well as numerical results are also presented in
the appendix, available in the online supplemental material.
Moreover, all proofs of our theorems and lemmas are also
provided in the appendix, available in the online supple-
mental material.

2 PRELIMINARIES

A wireless network is modeled as a unit disk graph (UDG),
G ¼ ðV; EÞwith n ¼ jVj, where V and E are the node and edge
sets, respectively. Throughout this work, we assume that G is
connected. Two nodes u and v are adjacent in G if and only if
their euclidean distance in between is less than 1. Time is
assumed to be discrete and synchronized across the network
by a global clock. Each node is able to read a variable,
denoted by “Time,” representing its clock value. Message
transmissions are allotted into the synchronized time slots of
equal length. In each time slot, a node can either transmit or
receive a message but cannot carry both out simultaneously.
Due to the broadcast nature of a wireless channel, whenever
a node transmits a message, all its neighbors are aware of
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this transmission. If two or more neighbors around a node w
transmit in the same time slot,wwill not successfully receive
any message; in this case, we also say that collision occurs at
the node w. Throughout this work, we also assume that each
node in the network has a unique ID.

2.1 Problem Formulation

In a network represented as a UDG G ¼ ðV; EÞ, a single-

source broadcast schedule with respect to a fixed source node

s 2 V can be represented as a function fs as follows:

fs : V � IN! f0; 1g, where fsðv; tÞ ¼ 1 if v 2 V transmits in

time slot t 2 IN. Throughout this paper, we say that a node v

is scheduled to transmit in time slot t if and only if we set

fsðv; tÞ ¼ 1. A node u 2 V is said to receive successfully or

receive collision-free in time slot t from a neighbor v 2 V if and

only if fsðv; tÞ ¼ 1 and fsðw; tÞ ¼ 0, 8w 6¼ v such that w is a

neighbor of u. If a node v is scheduled to transmit a message

in time slot t, it is required that either v is the source or v has

received the message successfully from a relay node in an

earlier time slot. It is also required that each node in V
except for the source s will eventually receive the message

successfully (either from s directly or through a relay node).

Given the source s, the latency of a single-source broadcast

schedule fs is the last time slot such that there are still some

node(s) transmitting. Formally, the latency of fs can be

defined as latðfsÞ ¼def
maxft 2 INjfsðv; tÞ ¼ 1; v 2 Vg. A multi-

source broadcast schedule with respect to a fixed nonempty

source subset U � V can be represented as a function

fU : V � IN! f0; 1g, in which fU depends on U instead of a

single node. Each source node u 2 U is preloaded with a

source-dependent message mu, and the objective is to

distribute mu to V � fug, for each u 2 U . The latency of fU
is defined as latðfUÞ ¼def

maxft 2 INjfUðv; tÞ ¼ 1; v 2 Vg, the

optimal latency (with respect to U alone) is defined as

optU ¼def
minf latðfUÞ, and the competitive ratio1 (with respect

to f and U) is defined as crðfUÞ ¼def latðfU Þ
optU

.
Let S denote the set of all broadcast schedules for G. A

multisource broadcast schedule family F is defined as a
mapping from the power set of V to S. Formally,
F : 2V ! S. Following this definition, FðUÞ is a multisource

broadcast schedule for U. The worst cast competitive ratio for
the multisource broadcast schedule family F is defined as
wcrðFÞ ¼def

maxU�V crðFðUÞÞ. The minimum-latency multi-
source broadcast problem can be defined as follows: Given
a UDG G ¼ ðV; EÞ, find a multisource broadcast schedule
family F such that wcrðFðUÞÞ is minimized. We also
assume that a node can aggregate2 (combine) multiple
messages into a single one for later relay to save bandwidth.

3 OUR PROPOSED MULTISOURCE BROADCAST

ALGORITHM

Here, in this section, we propose our main algorithm to
tackle the multisource broadcast problem. The main
algorithm of this section is Algorithm 6. In order to present
this algorithm clearly, we need to introduce many other
relevant algorithms as the required subroutines.

Our multisource broadcast algorithm is Algorithm 6, and
before executing it we need the preprocessing. The
preprocessing stage involves two phases: 1) Shared backbone
construction and 2) Distributed handshaking. Phase 1 is
undertaken in a centralized fashion, but it needs to be done
only once and can be performed offline. Since Phase 1
involves a very lengthy algorithm, we break it into Part 1
(Algorithm 2) and Part 2 (Algorithm 3). The core of Phase 2
is Algorithm 5, which is fully distributed. In order to
facilitate this algorithm, Phase 1 needs to be carried out as a
precondition. In Algorithm 2, we run Algorithms 1 and 4 as
the necessary subroutines, so we need to introduce
Algorithms 1-5 before presenting Algorithm 6 in this
section. The dependence relations among these algorithms
are illustrated in Fig. 1.

3.1 Phase 1: Shared Backbone Construction

Here, we present the method of constructing a shared
backbone. The detailed steps are presented in Algorithms 1,
2, and 3. Given a network G ¼ ðV; EÞ, we first run Algorithm
1 to obtain a subset of nodes P, called the set of primary
nodes.3 Then, we run Algorithm 2 followed by Algorithm 3
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Fig. 1. Dependence relations of our algorithms.

1. Although the competitive ratio is indeed a main metric for broadcast
scheduling algorithms, due to the design of our algorithms, the overall
latencies of our scheduling algorithms actually do not depend on U. We will
establish an upper bound for the competitive ratio.

2. Data aggregation means two data packets can be merged into one
single packet of the same size. This assumption is practical in most cases.
For example, if the minimum or maximum value of two packets are
considered, only one of them is needed for further consideration and the
other can be therefore discarded. Moreover, if each packets do not carry a
very big amount of information (such as video packets), two packets can be
aggregated in most cases since there is often redundancy in the design of
these data packets.

3. Since Algorithm 1 is deterministic, its output set can be regarded as the
definition of primary nodes.



to obtain a set of secondary nodes or connectors, denoted by S,

and then we add edges to result in a connected shared

backbone H ¼ ðV; EHÞ. Note that H possesses the important

properties stated in Lemma 5 in the appendix, available in

the online supplemental material. The remaining nodes not

chosen as either primary or secondary nodes are referred to

as the tertiary nodes.

Algorithm 1. Primary Node Selection

Input: A graph G ¼ ðV; EÞ with a node ordering

O ¼ ðv1; v2; . . . ; vnÞ
Output: A subset P � V.

1: P  v1.

2: for j 2 to n do

3: Add vj to P if vj is not adjacent (with respect to G) to
any node in P.

4: end for

5: return P.

Algorithm 2. Shared Backbone Construction (Part I)

Precondition: A connected unit disk graph G ¼ ðV; EÞ
Postcondition: This algorithm outputs a subgraph

H ¼ ðV; EHÞ of G and an auxiliary graph J ¼ ðVJ ; EJ Þ
possessing the five properties stated in Lemma 5.

1: Apply Alg. 1 with an arbitrary node ordering of V to

obtain P.

2: S  ;. VJ  P. EJ  ;.
3: for each pair fu; vg � P such that u; v are within 3 hops

do

4: if there exist node(s) that is adjacent to both u and v

then

5: Pick the one with the largest ID and denote it by

w0. We call w0 the sole connector for u and v.

6: Add w0 to S. Add ðu;w0Þ and ðv; w0Þ to EH.

7: Add ðu; vÞ to EJ .

8: else

9: Compare the IDs of u and v. Without loss of
generality, we may assume that u is the one with the

larger ID.

10: Consider each pair of nodes ðwu;wvÞ such that

wu is adjacent to u, wv is adjacent to v, and wu;wv are

adjacent to each other.

11: From these wu’s, we pick the one with the largest

ID and denote it by w1.

12: We then look at these wv’s such that wv is also a
neighbor of w1, and choose the one with the largest ID

to be denoted by w2.

13: We call w1 and w2 the first-hop and second-hop

connectors for u and v, respectively.

14: Add w1; w2 to S, and add ðu;w1Þ, ðw2; vÞ, and

ðw1; w2Þ to EH.

15: Add ðu; vÞ to EJ .

16: end if

17: end for

18: Run Alg. 4 to obtain label and parent information.

19: For each x 2 V � P, add ðx; prðxÞÞ to EH. =� Note that

prðxÞ is an output of Alg. 4. �=

Algorithm 3. Shared Backbone Construction (Part II:
Information Management)

Precondition: Same as Alg. 2 (Alg. 2 has been executed as

well).

Postcondition: The three properties stated in Lemma 6.

=� Update topology information �=

20: Each primary node u 2 P saves its local topology

information as follows: For each neighbor v in J , u

saves the corresponding sole connector or the
first-hop/second-hop connector pair.

21: Each secondary node in S locally saves all of its 1-hop or

2-hop primary neighbors as well as whether it is a sole,

first-hop, or second-hop connector for any pair of them.

=� Update coloring information �=

22: Apply the hexagonal coloring method and obtain the C12

and C37 colorings.

23: Each primary node u 2 P locally saves its own colors
C12ðuÞ; C37ðuÞ.

24: Each secondary node in S locally saves the coloring

information C12ðuÞ; C37ðuÞ for each primary node u

within 2 hops.

=� Update rank information �=

25: for each u 2 P do

26: Sort all neighbors of u in J to form a list LðuÞ
according to their IDs in descending order.

27: Suppose LðuÞ ¼ fv1; v2; . . .g, in which v1 is the one

with the largest ID. Define the rank function rkðu; vjÞ as

follows: rkðu; vjÞ ¼def
j. u locally saves the rank

information rkðu; vÞ for each neighbor v in J .

28: end for

29: Each node in S locally saves the rank information

rkðu; vÞ for each pair of primary nodes u; v within 2

hops in G.
=� Update label information �=

30: Each node z 62 P locally saves the label

information lbðzÞ and the parent information prðzÞ. The

corresponding primary node prðzÞ also saves the

information about z and lbðzÞ.
31: Let �max ¼def

maxu2P
�
�fzjprðzÞ ¼ ug

�
�. Each primary and

secondary node locally saves �max.

32: Let Rmax ¼
def

the maximum hop distance in J between
any pair of nodes u; v 2 P. Each primary and secondary

node locally saves Rmax.

Algorithm 4. Label Finder

Precondition: A graph G ¼ ðV; EÞ. Alg. 2 has been run.
Postcondition: lbðzÞ and prðzÞ will be well-defined for each

z 2 V � P.

1: Initialize i 1;X0  P;Z  V � P
2: while Z 6¼ ; do

3: Initialize W  X i�1.

4: for each x 2 X i�1 do

5: if each element in Z is adjacent to at least one

element in W � fxg, then we remove x from W.
6: end for

7: X i  W
8: for each u 2 X i do

9: Find a neighbor z 2 Z of u such that z is not
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adjacent to any other node in X i. Set lbðzÞ  i,
prðzÞ  u, Z  Z � fzg

10: end for

11: i iþ 1

12: end while

3.2 Phase 2: Distributed Handshaking

In this phase, we introduce Algorithm 5. The correctness
and time complexity of Algorithm 5 will be studied via
Lemma 10 and Theorem 5 in the appendix, available in the
online supplemental material, respectively. Their proofs can
also be found in the appendix, available in the online
supplemental material.

Algorithm 5. Distributed Handshaking Algorithm

Precondition: Algs. 2 and 3 have been run. Each primary

node has a message mu to transmit. All nodes have the

same starting time Ts. This algorithm is run locally at

each node x in the network.
Postcondition: Each primary node will receive the message

mv collision-free from each neighbor v in J .

1: if x 2 P then =� primary to first-hop �=

2: Schedule x to transmit mx when Time ¼ Ts þ C12ðxÞ.
3: else if x is the sole or first-hop connector for some

primary nodes u; v then =� first-hop to second-hop �=

4: x waits to receive mu from u until Time ¼ Ts þ 12.

5: Schedule x to relay mu when
Time ¼ Ts þ 12þ ðC37ðuÞ � 1Þ�40þ rkðu; vÞ.

6: else if x is the second-hop connector for some primary

nodes u; v then =� second-hop to primary �=

7: x waits to receive mu from the first-hop node until

Time ¼ Ts þ 1492.

8: Schedule x to relay mu when

Time ¼ Ts þ 1492þ ðC12ðvÞ � 1Þ�40þ rkðv; uÞ.
9: end if

3.3 Multisource Broadcast

Now, we introduce Algorithm 6, the main algorithm of this
work. Having constructed the shared backbone, we can
carry out multisource broadcast any time for any source
subset. The correctness of Algorithm 6 will be analyzed
using Lemma 11 in the appendix, available in the online
supplemental material. Theorem 1 addresses the time
complexity of Algorithm 6.

Algorithm 6. Distributed Multisource Broadcast Algorithm

Precondition: A graph G ¼ ðV; EÞ with a source subset
U � V is given. Each node s 2 U has a message ms to

transmit to the entire network. Algs. 2 and 3 have been

run. Starting time is 0. This algorithm is run locally at

each node x in the network.

Postcondition: Each node in the network will receive ms

collision-free for each s 2 U.

1: if x 2 U n P then Schedule s to transmit ms to prðsÞ at

time lbðsÞ.
2: end if

3: if x 2 U \ P then

4: Wait until Time ¼ �max

5: u merges its message mu with all of its received

messages, if any, into a packet m0u.

6: Append number 1 at the end of the message m0u, so
the message becomes fm0u; 1g. Apply Alg. 5 with this

message at Time ¼ �max þ 1.

7: repeat

8: Keep receiving message(s) from its neighbors.

9: Upon receipt of a message fm; kg, check

whether k � Rmax. If yes, relay the message fm; kþ 1g
when Time � �max mod 1972 by applying Alg. 5.

10: until Time ¼ �max þ 1972 � Rmax

11: x merges all of its received messages into a single

message and then transmits at Time ¼ �max þ 1972 �
Rmax þ C12ðxÞ.

12: end if

13: if x 2 P n U then

14: repeat

15: Keep receiving message(s) from its neighbors.

16: Upon receipt of a message fm; kg, check
whether k � Rmax. If yes, relay the message fm; kþ 1g
when Time � �maxmod 1972 by applying Alg. 5.

17: until Time ¼ �max þ 1972 � Rmax

18: x merges all of its received messages into a single

message and then transmits at Time ¼ �max þ 1972 �
Rmax þ C12ðxÞ.

19: end if

Theorem 1. The time complexity of our multisource broadcast
algorithm (Algorithm 6) is �max þ 1972 � Rmax þ 12 time
slots.

Since the time complexity can be obtained directly from
Line 18 of Algorithm 6, we omit the proof.

4 Two-SEPARATED MULTISOURCE BROADCAST

ALGORITHM

In this section, we want to show a modified version of
Algorithm 6 by constructing a different shared backbone
having the 2-separation property (see the postcondition of
Lemma 12). This algorithm will significantly reduce the time
complexity of the handshaking algorithm (Algorithm 5) and
therefore may significantly reduce the multisource broadcast
latency. However, such a property arises at a cost of
potentially increasing Rmax and therefore increasing the
broadcast latency. Theoretically speaking, this increase can
be large as there can exist a certain topology such that
constructing a 2-separated backbone could significantly
increase Rmax. However, according to our simulations, this
increase is usually not very large. Therefore, this fact usually
leads to a practical multisource broadcast algorithm with
much less time complexity, although it is not theoretically
guaranteed.

The main algorithm of this section is Algorithm 10.
Similarly, in order to present this algorithm clearly, we need
to introduce several other algorithms as subroutines. Our
multisource broadcast algorithm is Algorithm 10, and before
executing it we need to do preprocessing. The preprocessing
stage involves two phases: 1) 2-separated shared backbone
construction and 2) 2-separated distributed handshaking. Phase 1
is carried out in a centralized fashion, but it needs to be done
only once and can be performed offline. Since Phase 1 is a
very lengthy algorithm, we break it into Part 1 (Algorithm 7)
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and Part 2 (Algorithm 8). The core of Phase 2 is Algorithm 9,
which is a fully distributed algorithm. In order to facilitate
Phase 2, Phase 1 needs to be undertaken as a precondition.
In Algorithm 7, we run Algorithm 1 as a subroutine, so we
need to introduce Algorithms 7-9 before presenting Algo-
rithm 10. The dependence relations among these algorithms
are shown in Fig. 1.

We present the method of constructing a 2-separated
shared backbone. The detailed steps are presented in
Algorithms 7 and 8. The 2-separated shared backbone H0
with the auxiliary graph J 0 obtained by running Algo-
rithms 7 and 8 possesses important properties presented in
Lemma 12 in the appendix, available in the online
supplemental material. The correctness of Algorithm 10
will be studied in Lemma 16 in the appendix, available in
the online supplemental material. Theorem 2 addresses the
time complexity of Algorithm 10.

Algorithm 7. 2-Separated Backbone Construction (Part I)

Precondition: A connected unit disk graph G ¼ ðV; EÞ
Postcondition: This algorithm outputs a subgraph

H0 ¼ ðV; EH0Þ of G and an auxiliary graph J 0 ¼ ðVJ ; EJ 0Þ
such that Lemma 12 holds.

1: Arbitrarily choose a node g in V.
2: Sort all nodes in V according to its hop-distance to g in

increasing order. Let O ¼ ðv1; v2; . . .Þ denote this

ordering.

3: Apply Alg. 1 with O to obtain P.

4: S  ;. VJ  P. EJ 0  ;.
5: for each pair fu; vg � P such that u; v are within 2 hops

do

6: Look at the nodes adjacent to both u and v. Pick the
one with the largest ID and denote it by w0. We call w0

the sole connector for u and v.

7: Add w0 to S. Add ðu;w0Þ and ðv; w0Þ to EH0 .
8: Add ðu; vÞ to EJ 0 .
9: end for

10: Run Alg. 4 to get label and parent information.

11: For each x 2 V � P, add ðx; prðxÞÞ to EH0 .

Algorithm 8. 2-Separated Backbone Construction (Part II:

Information Management)

Precondition: Same as Alg. 7 (Alg. 7 has been executed).

Postcondition: The four properties stated in Lemma 8.

=� Update topology information �=

12: Each primary node u 2 P saves its local topology

information as follows: For each neighbor v in J 0, u
saves the corresponding connector.

13: Each secondary node in S locally saves all of its primary

neighbors as well as whether it is a connector for any

pair of them.

14: Apply the hexagonal coloring method and obtain the C12

coloring. =� Update coloring information �=

15: Each primary node u 2 P locally saves its own color

C12ðuÞ.
16: Each secondary node in S locally saves the coloring

information C12ðuÞ for each primary neighbor u (in G).

17: for each u 2 P do =� Update rank information �=

18: Sort all neighbors of u in J 0 to form a list LðuÞ
according to their IDs in descending order.

19: Suppose LðuÞ ¼ fv1; v2; . . .g, in which v1 is the one
with the largest ID. Define the rank function rkðu; vjÞ as

follows: rkðu; vjÞ ¼def
j. u locally saves the rank

information rkðu; vÞ for each neighbor v in J 0.
20: end for

21: Each node in S locally saves the rank information

rkðu; vÞ for all primary nodes u; v within 2 hops in G.

22: Each node z 62 P locally saves the label information lbðzÞ
and the parent information prðzÞ. The corresponding
primary node prðzÞ also saves the information about z

and lbðzÞ. =� Update label information �=

23: Let �max ¼def
maxu2P

�
�fzjprðzÞ ¼ ug

�
�. Each primary and

secondary node locally saves �max.

24: Let Rmax ¼def
the maximum hop distance in J 0 between

any pair of nodes u; v 2 P. Each primary and secondary

node locally saves Rmax.

Algorithm 9. 2-Separated Distributed Handshaking

Algorithm

Precondition: Algs. 7 and 8 have been executed. Each

primary node has a message mu to transmit. All nodes

have the same starting time Ts. This algorithm is run

locally at each node x in the network.
Postcondition: Each primary node will receive the message

mv collision-free from each neighbor v in J 0.
1: if x 2 P then =� primary to connector �=

2: Schedule x to transmit mx when

Time ¼ Ts þ C12ðxÞ.
3: else if x is a connector for some primary nodes u; v then

4: x waits to receive mu from u until Time ¼ Ts þ 12.

=� connector to primary �=
5: Schedule x to relay mu when

Time ¼ Ts þ 12þ ðC12ðvÞ � 1Þ�20þ rkðv; uÞ.
6: end if

Algorithm 10. Distributed 2-Separated Multi-Source Broad-

cast Algorithm
Precondition: A graph G ¼ ðV; EÞ with a source subset

U � V is given. Each node s 2 U has a message ms to

transmit to the entire network. Algs. 7 and 8 have been

run. Starting time is 0. This algorithm is run locally at

each node x in the network.

Postcondition: Each node in the network will receive ms

collision-free for each s 2 U.

1: if x 2 U n P then

2: Schedule s to transmit ms to prðsÞ at time lbðsÞ.
3: end if

4: if x 2 U \ P then

5: Wait until Time ¼ �max

6: u merges its message mu with all of its received

messages, if any, into a packet m0u.

7: Append number 1 at the end of the message m0u, so

the message becomes fm0u; 1g. Apply Alg. 9 with this
message at Time ¼ �max þ 1.

8: repeat

9: Keep receiving message(s) from its neighbors.

10: Upon receipt of a message fm; kg, check whether

k � Rmax. If yes, relay the message fm; kþ 1g when
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Time � �max mod 252 by applying Alg. 9.
11: until Time ¼ �max þ 252 � Rmax

12: x merges all of its received messages into a single

message and transmits at

Time ¼ �max þ 252�Rmax þ C12ðxÞ.
13: end if

14: if x 2 P n U then

15: repeat

16: Keep receiving message(s) from its neighbors.
17: Upon receipt of a message fm; kg, check whether

k � Rmax. If yes, relay the message fm; kþ 1g when

Time � �max mod 252 by applying Alg. 5.

18: until Time ¼ �max þ 252 � Rmax

19: x merges all of its received messages into a single

message and transmits at

Time ¼ �max þ 252 � Rmax þ C12ðxÞ.
20: end if

Theorem 2. The time complexity of our 2-separated multisource
broadcast algorithm (Algorithm 10) is �max þ 252�Rmax þ 12
time slots.

Since the time complexity can be obtained directly from
Line 19 of Algorithm 10, we omit the proof.

5 RELATED WORK

Many research works regarding the single-source broadcast
scheduling problems in wireless networks have been
dedicated in the literature in the last two decades. They
can be classified into two categories in terms of graph
models, namely general graphs and disk graphs.

In the first category, networks are modeled as arbitrary
undirected graphs. Most of the existing works focus on
designing the deterministic centralized scheduling algo-
rithms [3], [4], [5], [6], [7], [8], [9]. Among the aforemen-
tioned works, the best latency result was achieved as
OðRþ log2nÞ by Kowalski and Pelc in [9], where n is the
number of nodes and R is the radius of the graph with
respect to the source. On the other hand, the deterministic
distributed scheduling algorithms were considered in [10],
[11]. Moreover, some typical randomized algorithms of Las
Vegas type were proposed in [12], [13].

The recent prevalent network model is based on the disk
graph when each node has a different transmission range. It
can also be further simplified as a Unit Disk Graph when the
transmission ranges of the the nodes are identical. By taking
advantage of the geometric property of UDG, the scheduling
algorithms with constant approximation ratios were pro-
posed in [1], [2], [14], [15], [16]. To be specific, Dessmark and
Pelc in [14] presented a broadcast schedule of 2,400-
approximation. Gandhi et al. in [1] proposed an approxima-
tion algorithm with a ratio around 648. Huang et al. in [2]
improved this approximation ratio to 16. In addition, when
the interference range is different from the transmission
range for each node, Chen et al. in [15] gave a 2��2-
approximation algorithm, where � > 1 is the ratio of the
interference range to the transmission range. Shang et al. in
[16] further improved the approximation ratio to
ð1þ 2�Þ2 þ 32. Basically, these existing works rely on the
same idea of propagating messages along a fixed-source

broadcast tree and designing the appropriate transmission
schedules in order to avoid collisions.

Apart from the broadcast algorithms above, Bar-Yehuda
and Israeli in [17] considered the k-point-to-point transmis-
sion problem. Lee et al. in [18] studied the multisource
broadcast problem and designed a randomized algorithm.
However, they did not derive any theoretical latency
bound. Related problems such as beaconing, gossiping,
and dominating set construction were studied in [19], [20],
and [21], respectively. To the best of our knowledge, this
work is the first attempt to design a multisource broadcast
algorithm with a proven theoretical latency bound.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the Minimum-Latency Multisource
Broadcast problem and design two broadcast algorithms
(Algorithms 6 and 10) to reduce the latency. Since multi-
source broadcast is very time consuming and the associated
latency bound cannot be found in the existing literature, our
work can be deemed as the first attempt to tackle with this
problem. Algorithm 6 leads to a guaranteed latency upper
bound in terms of maximum hop distance, while Algorithm
10 does not have. Although Algorithm 10 does not have a
theoretical latency upper bound, heuristically speaking, it
can lead to a significantly lower latency and therefore it is
very useful in practice. For our future work, power
limitation is an important problem. We believe that we
could extend this work and consider power limitation in
light of [22]. Moreover, the unit disk graph model adopted
in this paper could be replaced by more practical
interference models such as two-disk or signal-to-interfer-
ence-plus-noise ratio (SINR) models.

ACKNOWLEDGMENTS

S. C.-H. Huang was supported by the National Science
Council of Taiwan under the project 99-2218-E-007-021. H.-C.
Wu was supported by Networking Technology and Systems
Award (NSF-CNS 0963793) from National Science Founda-
tion, DoD-DEPSCoR Grant (N0014-08-1-0856) from Office of
Naval Research, NSF Pilot-fund, and OPT-IN grant from
Louisiana Board of Regents.

REFERENCES

[1] R. Gandhi, S. Parthasarathy, and A. Mishra, “Minimizing Broad-
cast Latency and Redundancy in Ad Hoc Networks,” Proc.
MobiHoc ’03, pp. 222-232, 2003.

[2] S.C.-H. Huang, P.-J. Wan, X. Jia, H. Du, and W. Shang,
“Minimum-Latency Broadcast Scheduling in Wireless Ad Hoc
Networks,” Proc. IEEE INFOCOM ’07, pp. 733-739, 2007.

[3] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg, “A Lower Bound for
Radio Broadcast,” J. Computer and System Sciences, vol. 43, no. 2,
pp. 290-298, 1991.

[4] M. Elkin and G. Kortsarz, “An Improved Algorithm for Radio
Networks,” Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA ’05), 2005.

[5] I. Gaber and Y. Mansour, “Centralized Broadcast in Multihop
Radio Networks,” J. Algorithms, vol. 46, no. 1, pp. 1-20, 2003.

[6] I. Chlamtac and O. Weinstein, “The Wave Expansion Approach to
Broadcasting in Multihop Radio Networks,” IEEE Trans. Comm.,
vol. 39, no. 3, pp. 426-433, Mar. 1991.

[7] D.R. Kowalski and A. Pelc, “Centralized Deterministic Broad-
casting in Undirected Multi-Hop Radio Networks,” Proc. Int’l
Workshop Approximation Algorithms for Combinatorial Optimization
Problems (APPROX-RANDOM ’04), pp. 171-182, 2004.

HUANG ET AL.: MULTISOURCE BROADCAST IN WIRELESS NETWORKS 1913



[8] L. Gasieniec, D. Peleg, and Q. Xin, “Faster Communication in
Known Topology Radio Networks,” Proc. ACM Symp. Principles of
Distributed Computing (PODC ’05), pp. 129-137, 2005.

[9] D.R. Kowalski and A. Pelc, “Optimal Deterministic Broadcasting
in Known Topology Radio Networks,” Distributed Computing,
vol. 19, pp. 185-195, 2007.

[10] D. Bruschi and M. Del Pinto, “Lower Bounds for the Broadcast
Problem in Mobile Radio Networks,” Distributed Computing,
vol. 10, no. 3, pp. 129-135, 1997.

[11] M. Chrobak, L. Gasieniec, and W. Rytter, “Faster Broadcasting
and Gossiping in Radio Networks,” Proc. Symp. Foundations of
Computer Science (FOCS ’00), pp. 575-581, 2000.

[12] R. Bar-Yehuda, O. Goldreich, and A. Itai, “On the Time-
Complexity of Broadcast in Multi-Hop Radio Networks: An
Exponential Gap between Determinism and Randomization,” J.
Computer and System Sciences, vol. 45, no. 1, pp. 104-126, 1992.

[13] E. Kushilevitz and Y. Mansour, “An �ðD logðN=DÞÞ Lower Bound
for Broadcast in Radio Networks,” SIAM J. Computing, vol. 27,
pp. 702-712, 1998.

[14] A. Dessmark and A. Pelc, “Tradeoffs between Knowledge and
Time of Communication in Geometric Radio Networks,” Proc.
ACM Symp. Parallel Algorithms and Architectures (SPAA ’01), pp. 59-
66, 2001.

[15] Z. Chen, C. Qiao, J. Xu, and T. Lee, “A Constant Approximation
Algorithm for Interference Aware Broadcast in Wireless Net-
works,” Proc. IEEE INFOCOM ’07, pp. 740-748, 2007.

[16] W.-P. Shang, P.-J. Wan, and X.-D. Xu, “Improved Algorithm for
Broadcast Scheduling of Minimal Latency in Wireless Ad Hoc
Networks,” Acta Math. Applicatae Sinica, vol. 26, no. 1, pp. 13-22,
2010.

[17] R. Bar-Yehuda and A. Israeli, “Multiple Communication in Multi-
Hop Radio Networks,” Proc. ACM Symp. Principles of Distributed
Computing (PODC ’89), pp. 329-338, 1989.

[18] C. Lee, M.H. Ammar, and J.E. Burns, “Randomized Multi-Source
Broadcast Protocols in Multi-Hop Radio Networks,” Technical
Report: GIP-CC-93-69, Georgia Inst. of Technology, 1993.

[19] P.-J. Wan, X. Xu, L. Wang, X. Jia, and E.K. Park, “Minimum-
Latency Beaconing Schedule in Multihop Wireless Networks,”
Proc. IEEE INFOCOM ’09, pp. 2340-2346, 2009.

[20] S.C.-H. Huang, P.-J. Wan, H. Du, and E.K. Park, “Minimum
Latency Gossiping in Radio Networks,” IEEE Trans. Parallel and
Distributed Systems, vol. 21, no. 6, pp. 790-800, June 2010.

[21] L. Gewali, K. Mohamad, and M. Tun, “Interference Aware
Dominating Set for Sensor Network,” Proc. Third Int’l Conf.
Information Technology: New Generations, pp. 268-273, http://
dl.acm.org/citation.cfm?id=1128011.1128119, 2006.

[22] S. Yi and Y.T. Hou, “Theoretical Results on Base Station Move-
ment Problem for Sensor Network,” Proc. IEEE INFOCOM ’08,
pp. 1-5, 2008.

Scott C.-H. Huang received the BS degree from
the National Taiwan University, and the PhD
degree from the University of Minnesota, Twin
Cities. He is currently an assistant professor in
the Department of Electrical Engineering, Na-
tional Tsing Hua University. Prior to that, he had
joined the faculty of Computer Sciences at City
University of Hong Kong. He has published more
than 30 peer-reviewed technical journal and
conferences papers. His research interests

include wireless ad hoc/sensor network, security, communication
theory, as well as combinatorial optimization.

Hsiao-Chun Wu (M’00-SM’05) received the
BSEE degree from National Cheng Kung Uni-
versity, Taiwan, in 1990, and the MS and PhD
degrees in electrical and computer engineering
from University of Florida, Gainesville, in 1993
and 1999 respectively. Since January 2001, he
has joined the faculty in the Department of
Electrical and Computer Engineering, Louisiana
State University, Baton Rouge. He has pub-
lished more than 150 peer-refereed technical

journal and conference articles in electrical and computer engineering.
His research interests include the areas of wireless communications and
signal processing. He is an IEEE distinguished lecturer. He currently
serves as an associate editor for IEEE Transactions on Broadcasting,
IEEE Signal Processing Letters, IEEE Communications Magazine,
International Journal of Computers and Electrical Engineering, Journal
of Information Processing Systems, Physical Communication, Journal of
the Franklin Institute, and International Journal of Advancements in
Technology. He was a lead guest editor for IEEE Journal of Selected
Topics in Signal Processingand Journal of Communications. He used to
serve as an associate editor for IEEE Transactions on Vehicular
Technology. He has also served for numerous textbooks, IEEE/ACM
conferences and journals as the technical committee, symposium chair,
track chair, or the reviewer in signal processing, communications,
circuits and computers. He is a senior member of the IEEE.

Sundaraja Sitharama Iyengar (F’95) is cur-
rently the director and Ryder professor at Florida
International University’s School of Computing
and Information Sciences in Miami, Florida. He
was the Roy Paul Daniels chaired professor and
chairman of computer science at Louisiana
State University, and he is also been the chaired
professor at various institutions around the
world. His research interests include high-
performance algorithms, data structures, sensor

fusion, data mining, and Computational aspects of intelligent systems.
He has coauthored eight books and edited seven books. He has
published more than 380 research papers. He is a SIAM distinguished
lecturer/ACM National lecturer/IEEE distinguished scientist. He has
served as the editor of several IEEE journals and is the founding editor-
in-chief of the International Journal of Distributed Sensor Networks. He
has won Distinguished Research Master Award/LSU Rain Makers
Award/Hub Cotton Award for faculty excellence. He is a fellow of the
IEEE, ACM, AAAS, and SDPS.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 10, OCTOBER 2012



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


